Pembelajaran Matematika Realistik

Dalam pembelajaran matematika selama ini, dunia nyata hanya dijadikan tempat mengaplikasikan konsep.  Siswa mengalami kesulitan matematika di kelas.  Akibatnya, siswa kurang menghayati atau memahami konsep-konsep matematika, dan siswa mengalami kesulitan untuk mengaplikasikan matematika dalam kehidupan sehari-hari.
Salah satu pembelajaran matematika yang berorientasi pada matematisasi pengalaman sehari-hari (mathematize of everyday experience) dan menerapkan matematika dalam kehidupan sehari-hari adalah pembelajaran Matematika Realistik (MR).

Karakteristik Matematika Realistik adalah menggunakan konteks “dunia nyata”, model-model, produksi dan konstruksi siswa, interaktif, dan keterkaitan (intertwinment). Berkaitan dengan hal itu, tulisan ini bertujuan untuk memaparkan secara teoretis pembelajaran matematika realistik, pengimplementasian pembelajaran MR, serta kaitan antara pembelajaran MR dengan pengertian.  Pembelajaran Matematika Realistik memberikan kesempatan kepada siswa untuk menemukan kembali dan merekonstruksi konsep-konsep matematika, sehingga siswa mempunyai pengertian kuat tentang konsep-konsep matematika.  Dengan demikian, pembelajaran Matematika Realistik akan mempunyai kontribusi yang sangat tinggi dengan pengertian siswa.

Kata kunci: matematika realistik, dunia nyata, rekonstruksi konsep matematika, model-model, interaktif.

1.  Pendahuluan

Salah satu karakteristik matematika adalah mempunyai objek yang bersifat abstrak.  Sifat abstrak ini menyebabkan banyak siswa mengalami kesulitan dalam matematika.  Prestasi matematika siswa baik secara nasional maupun internasional belum menggembirakan.  Rendahnya prestasi matematika siswa disebabkan oleh faktor siswa yaitu mengalami masalah secara komprehensif atau secara parsial dalam matematika.

Selain itu, belajar matematika siswa belum bermakna, sehingga pengertian siswa tentang konsep sangat lemah.Jenning dan Dunne (1999) mengatakan bahwa, kebanyakan siswa mengalami kesulitan dalam mengaplikasikan matematika ke dalam situasi kehidupan real.  Hal lain yang menyebabkan sulitnya matematika bagi siswa adalah karena pembelajaran matematika kurang bermakna.  Guru dalam pembelajarannya di kelas tidak mengaitkan dengan skema yang telah dimiliki oleh siswa dan siswa kurang diberikan kesempatan untuk menemukan kembali dan mengkonstruksi sendiri ide-ide matematika.  Mengaitkan pengalaman kehidupan nyata anak dengan ide-ide matematika dalam pembelajaran di kelas penting dilakukan agar pembelajaran bermakna (Soedjadi, 2000; Price,1996; Zamroni, 2000).

Menurut Van de Henvel-Panhuizen (2000),

bila anak belajar matematika terpisah dari pengalaman mereka sehari-hari maka anak akan cepat lupa dan tidak dapat mengaplikasikan matematika  Berdasarkan pendapat di atas, pembelajaran matematika di kelas ditekankan pada keterkaitan antara konsep-konsep matematika dengan pengalaman anak sehari-hari.  Selain itu, perlu menerapkan kembali konsep matematika yang telah dimiliki anak pada kehidupan sehari-hari atau pada bidang lain sangat penting dilakukan.

Salah satu pembelajaran matematika yang berorientasi pada matematisasi pengalaman sehari-hari (mathematize of everyday experience) dan menerapkan matematika dalam kehidupan sehari-hari adalah  pembelajaran Matematika Realistik (MR)

2.  Kajian Teori

Kajian Teori ini mengacu pada pendapat Freudenthal yang mengatakan bahwa matematika harus dikaitkan dengan realita dan matematika merupakan aktivitas manusia.  Ini berarti matematika harus dekat dengan anak dan relevan dengan kehidupan nyata sehari-hari.  Matematika sebagai aktivitas manusia berarti manusia harus diberikan kesempatan untuk menemukan kembali ide dan konsep matematika dengan bimbingan orang dewasa (Gravemeijer, 1994).

Upaya ini dilakukan melalui penjelajahan berbagai situasi dan persoalan-persoalan “realistik”.  Realistik dalam hal ini dimaksudkan tidak mengacu pada realitas tetapi pada sesuatu yang dapat dibayangkan oleh siswa (Slettenhaar, 2000).  Prinsip penemuan kembali dapat diinspirasi oleh prosedur-prosedur pemecahan informal, sedangkan proses penemuan kembali menggunakan konsep matematisasi.

Dua jenis matematisasi diformulasikan oleh Treffers (1991), yaitu matematisasi horisontal dan vertikal.

Contoh matematisasi horisontal adalah pengidentifikasian, perumusan, dan penvisualisasi masalah dalam cara-cara yang berbeda, dan pentransformasian masalah dunia real ke masalah matematik.

Contoh matematisasi vertikal adalah representasi hubungan-hubungan dalam rumus, perbaikan dan penyesuaian model matematik, penggunaan model-model yang berbeda, dan penggeneralisasian.  Kedua jenis matematisasi ini mendapat perhatian seimbang,  karena kedua matematisasi ini mempunyai nilai sama (Van den Heuvel-Panhuizen, 2000) .

Berdasarkan matematisasi horisontal dan vertikal, pendekatan dalam pendidikan matematika dapat dibedakan menjadi empat jenis yaitu mekanistik, emperistik, strukturalistik, dan realistik.

Pendekatan mekanistik

merupakan pendekatan tradisional dan didasarkan pada apa yang diketahui dari pengalaman sendiri (diawali dari yang sederhana ke yang lebih kompleks).  Dalam pendekatan ini kita dianggap sebagai mesin.  Kedua jenis matematisasi tidak digunakan.

Pendekatan emperistik

adalah suatu pendekatan dimana konsep-konsep matematika tidak diajarkan, dan diharapkan siswa dapat menemukan melalui matematisasi horisontal.

Pendekatan strukturalistik

merupakan pendekatan yang menggunakan sistem formal, misalnya pengajaran penjumlahan cara panjang perlu didahului dengan nilai tempat, sehingga suatu konsep dicapai melalui matematisasi vertikal.

Pendekatan realistik

adalah suatu pendekatan yang menggunakan masalah realistik sebagai pangkal tolak pembelajaran.  Melalui aktivitas matematisasi horisontal dan vertikal diharapkan siswa dapat menemukan dan mengkonstruksi konsep-konsep matematika.

2.1 Menggunakan Model-model (Matematisasi)

Menggunakan Model pembelajaran sangat bagus untuk mempengaruhi minat siswa untuk mempelajari suatu ilmu matematika.Dikarenakan dengan adanya model matematika siswa lebih bisa membayangkan ke dunia yang lebih nyata.Hasilnya minat untuk belajar matematika sangat besar. Maka dalam proses pembelajaran matematika sangat dibutuhkan model-model pembelajaran sebagai media agar siswa bsa lebih mengertikan suatu materi dalam pembelajaran.

2.2 Menggunakan Produksi dan Konstruksi

Streefland (1991) menekankan bahwa dengan pembuatan “produksi bebas” siswa terdorong untuk melakukan refleksi pada bagian yang mereka anggap penting dalam proses belajar.  Strategi-strategi informal siswa yang berupa prosedur pemecahan masalah kontekstual merupakan sumber inspirasi dalam pengembangan pembelajaran lebih lanjut yaitu untuk mengkonstruksi pengetahuan matematika formal.

2.3 Menggunakan Interaktif

Interaksi antarsiswa dengan guru merupakan hal yang mendasar dalam proses belajar mengajar.  Secara eksplisit bentuk-bentuk interaksi yang berupa negosiasi, penjelasan, pembenaran, setuju, tidak setuju, pertanyaan atau refleksi digunakan untuk mencapai bentuk formal dari bentuk-bentuk informal siswa.

2.4 Menggunakan Keterkaitan (Intertwinment)

Dalam Pembelajaran matematika pengintegrasian unit-unit matematika adalah esensial.  Apabila dalam pembelajaran kita mengabaikan keterkaitan dengan bidang yang lain, maka akan berpengaruh pada pemecahan masalah.  Dalam mengaplikasikan matematika, biasanya diperlukan pengetahuan yang lebih kompleks, dan tidak hanya aritmetika, aljabar, atau geometri tetapi juga bidang lain.

3.  Pembahasan

3.1 Matematika Realistik (MR)

Matematika Realistik (MR) yang dimaksudkan dalam hal ini adalah matematika sekolah yang dilaksanakan dengan menempatkan realitas dan pengalaman siswa sebagai titik awal pembelajaran.  Masalah-masalah realistik digunakan sebagai sumber munculnya konsep-konsep matematika atau pengetahuan matematika formal.  Pembelajaran MR di kelas berorientasi pada karakteristik-karakteristik MR, sehingga siswa mempunyai kesempatan untuk menemukan kembali konsep-konsep matematika atau pengetahuan matematika formal.  Selanjutnya, siswa diberi kesempatan mengaplikasikan konsep-konsep matematika untuk memecahkan masalah sehari-hari atau masalah dalam bidang lain.

Pembelajaran ini sangat berbeda dengan pembelajaran matematika selama ini yang cenderung berorientasi kepada memberi informasi dan memakai matematika yang siap pakai untuk memecahkan masalah-masalah.

Karena matematika realistik menggunakan masalah realistik sebagai pangkal tolak pembelajaran maka situasi masalah perlu diusahakan benar-benar kontektual atau sesuai dengan pengalaman siswa, sehingga siswa dapat memecahkan masalah dengan cara-cara informal melalui matematisasi horisontal.  Cara-cara informal yang ditunjukkan oleh siswa digunakan sebagai inspirasi pembentukan konsep atau aspek matematiknya ditingkatkan melalui matematisasi vertikal.  Melalui proses matematisasi horisontal-vertikal diharapkan siswa dapat memahami atau menemukan konsep-konsep matematika (pengetahuan matematika formal).

3.2 Pembelajaran Matematika Realistik (MR)

Menurut Pandangan Konstruktivis   Pembelajaran matematika menurut pandangan konstruktivis adalah memberikan kesempatan kepada siswa untuk mengkonstruksi konsep-konsep/prinsip-prinsip matematika dengan kemampuan sendiri melalui proses internalisasi.  Guru dalam hal ini berperan sebagai fasilitator.

Menurut Davis (1996), pandangan konstruktivis dalam pembelajaran matematika berorientasi pada:

(1) pengetahuan dibangun dalam pikiran melalui proses asimilasi atau akomodasi,

(2) dalam pengerjaan matematika, setiap langkah siswa dihadapkan kepada apa,

(3) informasi baru harus dikaitkan dengan pengalamannya tentang dunia melalui suatu kerangka logis yang mentransformasikan, mengorganisasikan, dan menginterpretasikan pengalamannya, dan

(4) pusat pembelajaran adalah bagaimana siswa berpikir, bukan apa yang mereka katakan atau tulis.

Konstruktivis ini dikritik oleh Vygotsky, yang menyatakan bahwa siswa dalam mengkonstruksi suatu konsep perlu memperhatikan lingkungan sosial.  Konstruktivisme ini oleh Vygotsky disebut konstruktivisme sosial (Taylor, 1993; Wilson, Teslow dan Taylor,1993; Atwel, Bleicher & Cooper, 1998).

Ada dua konsep penting dalam teori Vygotsky (Slavin, 1997), yaitu Zone of Proximal Development (ZPD) dan scaffolding.

Zone of Proximal Development (ZPD) merupakan jarak antara tingkat perkembangan sesungguhnya yang didefinisikan sebagai kemampuan pemecahan masalah secara mandiri dan tingkat perkembangan potensial yang didefinisikan sebagai kemampuan pemecahan masalah di bawah bimbingan orang dewasa atau melalui kerjasama dengan teman sejawat yang lebih mampu.

Scaffolding merupakan pemberian sejumlah bantuan kepada siswa selama tahap-tahap awal pembelajaran, kemudian mengurangi bantuan dan memberikan kesempatan untuk mengambil alih tanggung jawab yang semakin besar setelah ia dapat melakukannya (Slavin, 1997).  Scaffolding merupakan bantuan yang diberikan kepada siswa untuk belajar dan memecahkan masalah.  Bantuan tersebut dapat berupa petunjuk, dorongan, peringatan, menguraikan masalah ke dalam langkah-langkah pemecahan, memberikan contoh, dan tindakan-tindakan lain yang memungkinkan siswa itu belajar mandiri.

Pendekatan yang mengacu pada konstruktivisme sosial (filsafat konstruktivis sosial) disebut pendekatan konstruktivis sosial.  Filsafat konstruktivis sosial memandang kebenaran matematika tidak bersifat absolut dan mengidentifikasi matematika sebagai hasil dari pemecahan masalah dan pengajuan masalah (problem posing) oleh manusia (Ernest, 1991).  Dalam pembelajaran matematika, Cobb, Yackel dan Wood (1992) menyebutnya dengan   konstruktivisme sosio (socio-constructivism).  Siswa berinteraksi dengan guru, dengan siswa lainnya dan berdasarkan pada pengalaman informal siswa mengembangkan strategi-strategi  untuk merespon masalah yang diberikan.  Karakteristik pendekatan konstruktivis sosio ini sangat sesuai dengan karakteristik MR.

Konsep ZPD dan Scaffolding dalam pendekatan konstruktivis sosio, di dalam pembelajaran MR disebut dengan penemuan kembali terbimbing (guided reinvention).  Menurut Graevenmeijer (1994) walaupun kedua pendekatan ini mempunyai kesamaan tetapi kedua pendekatan ini dikembangkan secara terpisah.

Perbedaan keduanya adalah pendekatan konstruktivis sosio merupakan pendekatan pembelajaran yang bersifat umum, sedangkan pembelajaran MR merupakan pendekatan khusus yaitu hanya dalam pembelajaran matematika.

4. Penutup

Dalam pembelajaran Matematika siswa hendakya mampu mengaplikasikan ke dunia nyata yang membantu dalam proses pemblajaran itu sendiri. System pembelajaran Matematika Realistik (MR) merupakan system yang paling cocok untuk membantu siswa belajar yang lebih kreatif.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: